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A STUDY OF THE REACTION-PLANE APPROXIMATION 

IN ABLATION ANALYSES * 

By C. W. Stroud 
Langley Research Center 

SUMMARY 

Equations which describe the reactive zone in charring ablators during steady-state 
ablation are derived. Average reaction-zone temperatures and reaction-zone thicknesses 
are studied for half-order, first-order, and second-order reactions. This study was made 
for  each of these reaction orders  over a wide range of frequency factors and heats of 
pyrolysis. One technique used to simplify ablation analyses is to idealize the degradation 
process and assume that it occurs in a plane. The purpose of this paper is to investigate 
the validity of this technique as a good engineering approximation. Empirical relations 
are developed between the frequency factors and the average reaction-zone temperature 
for the three reaction orders.  These relations are used to locate the reaction zone in a 
reaction-plane analysis. The resulting temperature profile is shown to be in substantial 
agreement with the profile obtained from a reaction-in-depth analysis. 

INTRODUCTION 

Ablative materials a r e  used to protect spacecraft from the thermal environment 
encountered when entering planetary atmospheres. Char-forming ablators provide the 
most effective thermal protection for a range of entry environments. The excellent per- 
formance of these char-forming materials results from a number of complex thermal, 
chemical, and mass-transfer processes. A number of numerical analyses covering the 
complex processes have been conducted and programed for computer solution. 
refs. 1 and 2, for example.) These analyses take into account many important parameters. 

(See 

Studies of the processes that occur in the zone where ablation materials decompose 
to  yield char and gaseous products are reported in references 3 and 4 .  Assumptions 
were made in each of these analyses which had the effect of uncoupling the mass and 
energy equations. 

Some of the material in this paper was included in a thesis entitled "A Study of the 
Chemical Reaction Zone in Charring Ablators During Thermal Degradation" submitted in 
partial fulfillment of the requirements for the degree of Master of Science in Engineering 
Mechanics, Virginia Polytechnic Institute, September 1965. 
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One of the techniques used to simplify ablation analyses is to idealize the degrada- 
tion process and assume that it occurs in a plane. The purpose of the present paper is 
to  investigate the validity of this technique as a good engineering approximation. This 
paper presents the results of a simplified quasi-steady-state analysis of the processes 
that occur in the reaction zone of a charring ablator when the mass and energy equations 
a r e  coupled. The effects of thermal, chemical, and ablative characteristics of the mate- 
rial a r e  investigated in te rms  of temperature and density profiles. The physical dimen- 
sions of the decomposition zone a r e  given. The proper placement of the reaction-plane 
interface is investigated and a simplified method for incorporating the effects of pyrolysis 
reactions in more general analyses is discussed. 

SYMBOLS 

The units used in the physical quantities defined in this section a re  given in the 
International System of Units (SI). (See ref. 5.) 

A 

x 

cP 

cP7g 

d 

AE 

H 

AH 

- 
AH 

h 

he 

k 

2 

frequency factor, s-1 

kA 
dimensionless frequency factor, - 

P0CpV2 

specific heat of solid, joules/kilogram-degree Kelvin 

specific heat of gas, joules/kilogram-degree Kelvin 

thermocouple depth, meters 

activation energy, joules/mole 

total enthalpy, joules/kilogram 

heat of pyrolysis, joules/kilogram 

AHRDI ' 1,u dimensionless heat of pyrolysis, 
AECpP, 

enthalpy , j oules/kilogr am 

enthalpy external to boundary layer, joules/kilogram (figs. 9 and 10) 

thermal conductivity, watts/meter-degree Kelvin 



m 

N 

n 

i c w  

R 

T 

V 

Y 

rl 

8 

5 

P 

- 
Pi 

7 

mass-flow rate, kilograms/meter2-second 

number of reacting species 

reaction order 

cold-wall convective heating rate (figs. 9 and 10) 

universal gas constant, 8.3143 joules/mole-degree Kelvin 

temperature, degrees Kelvin 

surf ace-recession rate, meters/second 

coordinate normal to surface, meters 

dimensionless coordinate normal to surface, cPvpo %- 
RT dimensionless temperature, - 
AE 

coordinate defined by the transformation, y - VT, meters 

density, kilograms/meter3 

Pi dimensionless density, - 
Pi,o 

time, seconds 

Subscripts : 

C char 

g gas 

i integer denoting ith species 

m median 

0 initial 
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ANALYSIS 

The mechanism of ablation in charring ablators is coiliplex. It is mathematically 
described by a set of nonlinear partial differential equations. (See ref. 1, for example.) 
The purpose of this paper is not to attempt the solution of the complete problem but to 
focus attention on describing the reaction zone of a charring ablator such as the one in 
figure 1. In order to eliminate the transient effects caused by a change in the external 
environment, an assumption of steady-state ablation is made. This assumption reduces 
the equations to nonlinear ordinary differential equations. The equations a re  then put in 
a form which can be solved numerically to yield the dteady-state temperature and density 
profiles. Thus, attention is centered on the properties of the reaction zone%uch as thick- 
ness and median temperature. After all quantities a re  put in dimensionless form, the 
problem is studied by specifying two parameters, frequency factor and heat of pyrolysis, 
for each reaction. The frequency factor is characterized in simple bimolecular reactions 
as the frequency of collisions of the reacting molecules. For pyrolysis reactions, the 
frequency factor may be interpreted as an entropy of activation. The heat of pyrolysis 
characterizes the net amount of energy involved in the pyrolysis reactions. Once these 
parameters a re  specified, the equations are solved numerically for the density and tem- 
perature as a function of location within the ablator. 

The energy flow is approximately one dimensional through a large blunt body 
entering an atmosphere or  through an ablative coating of a rocket nozzle exposed to 
exhaust gases. Therefore, the energy equation for a chemically reacting solid can be 
approximated (ref. 6) by 

whe e the summation i carried out over the number of reacting species making up the 
ablation material. This equation can be expanded to give 

The kinetic energy of the transpiring gases is typically three orders of magnitude 
less than the chemical and thermal energy terms and is, therefore, neglected. With this 
assumption, the total energy is equal to the enthalpy. The pressure is assumed to remain 
constant throughout the material. This assumption is reasonable where an assumption of 
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one-dimensional heat flow is appropriate. With these two assumptions, equation (2) can 
be put in the form 

From the continuity equation for one-dimensional mass flow, the following equation is 
obtained: 

Substitution of equation (4) into equation (3) yields 

The coordinate t is defined by the transformation 

If it is assumed that a quasi-steady state exists and that v and k are constant, 
equation (5) can be put in the following form: 

By assuming that the specific heats of all constituents a re  the same and by noting that for 
a quasi-steady-state solution the total mass flow is constant and can be written 

N 
ing = vpo - v c pi 

i=l 

equation (7) becomes 
N 

k + 1 - v AH- - dpi + povcp- dT = 0 
d t2  i=l d5 d5 

Integrating once and evaluating the constant of integration as 5 - ~0 yields 

N 
k dT + v 1 AHi(Pi,o - pi) + cpvpo(T - To) = 0 

i= 1 d5 

(9) 



If the transformation 

(11) 
cPvpo 

q = 5 ,  

is made, equation (10) becomes 

It is necessary to determine pi as a function of T and q. This can be accom- 
plished by considering the reaction equation based on the Arrhenius reaction-rate relation 

where Ai is the frequency factor and n is the order of the reaction. 

Then, by using 

d& cpp0v2 dpi - mi 
dT d5 k drl 
-=  - v - =  - 

the following equation is obtained: 

AEi -- - dpi - - --.n.4-e k RT 
2 Pl 1 

dq CpP0V 

For a reaction of order n 

where C is the constant of integration. Integrating equation (16) and evaluating the con- 
stant as q -. ~0 gives, when n # 1 

1 
1 -n 
- 

Ai Jm e- %dq + ] (17) 
7 

Integrating equation (16), when n = 1, yields 

When only one reaction is present, it is convenient to make the following transformation: 
e = - -  RT 

AE 

6 

(19) 



Applying this transformation to equation (12), 

(1 - p) + e - - ToR - - 0 de AHpl,O 
drl+ AEcppo AE 

where p is the initial density of the one reactable species present. 
190 

Equation (17) or (18) and equation (20) were solved simultaneously by numerical 
methods to determine their value as a function of location in the ablation material. The 
numerical technique that was  used consisted of first holding the value of temperature con- 
stant in the density equation and integrating the appropriate equation for density over a 
small spatial increment. Then, the density was held constant at its calculated value in 
equation (20) while this differential equation was solved over the same small spatial incre- 
ment. This process was repeated in a step-by-step manner. The first-order differen- 
tial equation for temperature was solved by using Adams' method (ref. 7, for example). 
Trapezoidal integration was used in the density equation. In order to determine the accu- 
racy of this technique, comparisons w e r e  made with exact solutions. The exact solutions 
can be obtained when the heat of pyrolysis is zero and the density and temperature equa- 
tions a re  thus uncoupled. The numerical and the exact solutions agreed to five decimal 
places. This degree of accuracy is more than adequate for this simplified analysis. 

RESULTS AND DISCUSSION 

Density Profiles 

Figure 2 shows a plot of the local density through the reaction zone for two different 
values of frequency factor. The profiles shown are for first-order reactions (n = 1). The 
curves have been arbitrarily translated so that they coincide when 50 percent of the react- 
able material has decomposed. A reaction plane, which represents one approximation to 
the density profile, is also shown. For  the quasi-steady-state condition, under considera- 
tion here, the char thickness is determined by the process by which char, is removed at 
the surface. The char reaches an equilibrium thickness such that the linear velocity of 
the reaction zone is equal to the surface-recession rate. Therefore, the surface is located 
at some point to the left of the reaction zone shown in figure 2. This location depends on 
the environmental conditions. 

The thickness of the reaction zone is defined as the distance between the point at 
which the local density reaches a value of 98 percent and the point at which it reaches a 
density of 2 percent of the original density of the reactable species. In the example shown, 
80 percent of the original material is reactable. Figure 2 shows two frequency factors 
that are typical for a number of ablation materials. The reaction-zone thickness 
increases as the frequency factor decreases. With a frequency factor of 108 s-l, the 
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reaction-zone thickness is 3.1 mm. With a frequency factor of 10l2 s-1, the reaction- 
zone thickness is 1.6 mm. This latter value is very small in terms of measurement 
capabilities, when the problems involved in determining the boundaries of the zone are 
considered. The effect of reaction-zone thickness on other aspects of performance must 
be determined from examination of temperature profiles. 

Temperature Distributions 

Typical temperature profiles a re  shown in figure 3. In these profiles, it was 
assumed that external conditions a re  such that a 2000° K surface temperature is reached 
and the surface-recession rate is the same for each curve. With zero heat of pyrolysis, 
the temperature distribution is independent of the kinetic constants, and the temperature 
is much higher at a given distance from the surface than with a large heat of pyrolysis. 

The heat of pyrolysis used for the two lower curves is in the upper range of values 
that can be obtained with available materials. The decomposition reactions occur at the 
knee of the temperature curves. The reactions account for the higher rate of change in 
temperature at that point in each profile. At temperatures lower than the point where the 
reactions occur, the temperature at a given distance from the surface is lower for higher 
frequency factors. At higher temperatures where the decomposition reaction is complete, 
the temperature depends on the heat of pyrolysis and is independent of frequency factor. 
For the assumptions used here, the temperature is an exponential function of distance at 
all points except in the zone where decomposition occurs. The lower temperatures which 
are obtained at greater depths result from earlier completion of the reaction and hence 
earlier transition of the temperature to the exponential region after the reaction is com- 
pleted; thus, the pyrolysis temperature is lowered. 

Reaction- Zone Thickness 

Figure 4 illustrates the effect of surface-recession rate on the reaction-zone thick- 
ness for two values of heat of pyrolysis. The calculations shown are for first-order 
reactions and a frequency factor of 10l2 s-1. The midrange velocity of 25 pm/s is a 
typical surface-recession rate obtained for  a charring ablator. (See ref. 8, for example.) 
Increasing the surface-recession rate by a factor of 10 causes the reaction zone to become 
very thin. Decreasing the surface-recession rate by a factor of 10 causes the reaction 
zone to become thick enough to be significant when compared with the thickness of a typi- 
cal ablator. When the ablation velocity is decreased, the classification of the ablation 
material as two layers with an interface between appears to be inadequate. The tendency 
is for  an increase in the heat of pyrolysis to decrease the thickness of the reaction zone, 
but this decrease is not large. In general, higher values of the frequency factor result in 
thinner reaction zones. These trends are also found with reactions of other orders. 
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The effect of activation energy on reaction-zone thickness is shown in figure 5. The 
reaction-zone thickness is seen to be essentially independent of activation energy. This 
result might be expected after examination of equation (16). In that equation, the density 
is a function of activation energy only in terms of the ratio of activation energy to temper- 
ature. Therefore, it is anticipated that whereas the reaction-zone thickness is indepen- 
dent of activation energy, the pyrolysis temperature will be directly proportional to acti- 
vation energy. 

These results lead to an important conclusion regarding the effects of'the frequency 
factor on ablative performance. The thickness of the reaction zone is controlled almost 
entirely by the frequency factor, whereas the pyrolysis temperature is strongly influenced 
by activation energy. Activation energy and frequency factor affect pyrolysis in different 
ways, hence a unique value of each must be determined if accurate results are required. 

Median Temperature 

The median temperature of reaction is defined herein as that temperature at which 
50 percent of the reactable material has been degraded. The reaction-zone median tem- 
perature ($)m is plotted in figure 6 as a function of dimensionless frequency factor for 

two values of heat of pyrolysis. This figure shows a linear relationship between the 
median temperature and the logarithm of the dimensionless frequency factor for the three 
reaction orders. 

1 These results can be summarized in three equations. The median temperature - 
em is given for the half-order reaction by 

1 - = -0.7 + 0.955 In 
em 

- 2.2 hH 
for the first-order reaction by 

1 - = -1.50 + 0.955 In 
em 

- 3.6 hH 
and for the second-order reaction by 

1 = -1.70 + 0.945 In A - 1.8 E 
em 

when 
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Equations (21), (22), and (23) can be solved for velocity. Thus, by use of equation (8) ,  the 
mass-flow rate is, for half-order reactions 

0.7+2.2= - 1 
2(0.955) e 2(o.955em) 

m1/2 = (Po - 
for first-order reactions 

1.5+3.6= 1 

and for second-order reactions 

2(0.945) - 
m 2  = (Po - P )F e e 

POCP 

The mass-flow rates determined from equations (25), (26), and (27) are  the rates of pyrol- 
ysis of reaction-plane approximations. These flow rates locate the reaction plane at the 
median point in the reaction zone as shown in figure 2. Thus, the rate of pyrolysis is 
determined as a function of thermophysical properties and readily obtainable data from 
thermogravimetric analyses. The use of an equivalent reaction plane is thus placed on 
a rational basis. This correlation is only valid for one reactable species; hence, the 
summation signs do not appear in equations (25), (26), and (27). These equations for rate 
of pyrolysis can be inserted directly into other ablation analyses which utilize a reaction- 
plane approximation when one major pyrolysis reaction exists. 

Reaction-Plane Approximation 

With the information available on the rate of pyrolysis in equations (25), (26), and 
(27), comparison of the temperature distribution obtained from reaction-in-depth calcu- 
lations with the distribution obtained from these equations is possible. The two lower 
curves in figure 3 (reactions in depth) a re  plotted in figure 7 with the corresponding curves 
calculated from equation (26) (reaction-plane approximation). For each frequency factor, 
the temperature distribution obtained with the reaction-plane approximation is close to 
that obtained with reactions in depth and nowhere do they differ more than a few degrees. 
This agreement indicates the accuracy that is possible when quasi-steady-state conditions 
exist. 

The three equations for pyrolysis rate have been used in the transient ablation pro- 
gram described in reference 1. The calculated temperature histories of points inside 
ablation materials agree well with those measured by properly installed thermocouples 
even under transient conditions. Reference 9 is one well-documented example of the 
agreement that can be obtained by using the reaction-plane approximation. This 
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reference describes an extensive ground-test program that was conducted in support of a 
flight project. The model used in these ground tests is shown in figure 8. The results of 
eight tests are summarized in figure 9. The calculations accurately predict the measured 
recession of both the surface and the pyrolysis interface (reaction zone). As  would be 
expected from the results of figure 7, when the reaction plane is correctly placed, the 
temperatures are accurately calculated. The calculated and measured temperatures of 
various points in two models are shown in figure 10. The agreement is remarkable even 
during the highly transient cool-down period documented by the thermocouple at a depth 
of 1.29 cm. Apparently the reaction-plane approximation provides a good engineering 
approximation to the actual temperature distribution even when conditions depart from 
the steady state. This agreement indicates that if the proper pyrolysis temperature is 
chosen, results can be obtained with a reaction plane which are comparable to those from 
the more complicated reaction-in-depth analyses. 

CONCLUSIONS 

Equations have been derived to study the reaction-zone thickness of ablation mate- 
rials when significant heat of pyrolysis exists and the change in density across the reac- 
tion zone is considered. This technique has the effect of coupling the mass and energy 
equations. These equations were solved numerically for a wide range of quasi-steady- 
state conditions. 

As a result of the study, the following conclusions are reached: 

1. The temperature distribution through an ablation material depends strongly on 
the heat of pyrolysis. 

2. Activation energy and frequency factor affect pyrolysis in different ways, hence a 
unique value of each must be determined if accurate results are required. 

3. The total mass rate of pyrolysis and the median temperature of pyrolysis can be 
correlated on the basis of an Arrhenius function. 

4. A reaction-plane analysis incorporating the Arrhenius pyrolysis-temperature 
function gives temperatures which are in satisfactory agreement with reaction-in-depth 
analyses and with experiment. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 12, 1968, 
124-08-03-26-23. 
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Figure 1.- Cross section of phenolic nylon after test in apparatus C of the Langley entry structures facility. L-68-5645 
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Figure 3.- Temperature profiles for f irst-order reactions. 
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Figure 4.- Reaction-zone thickness as funct ion of surface-recession rate. Frequency factor, 1012 s-1. 
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Figure 5.- Effect of activation energy on reaction-zone thickness. 
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Figure 6.- Reaction-zone median temperature as function of dimensionless frequency factor. 
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Figure 7.- Comparison of reaction-in-depth and reaction-plane analyses. 

17 



Al 
EX5-, 

3.18 4 

-THERMOCOUPLE SENSOR PLUG 

THERMOCOUPLE LEAD WIRES E 
STEEL MODEL ATTACH M ENT 

A - J  ABLATION MATERIAL 

DOWNSTREAM VIEW S E C T I O N  A-A 

Figure 8.- Configuration of ground-test model instrumented w i th  thermocouple sensors. (Figure taken from ref. 9.) 
Al l  dimensions are in centimeters. 
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Figure 9.- Comparison of measured and calculated char-surface and pyrolysis-interface recessions. hCw = 2.48 MW/m2; he = 25.6 MJ/kg. 
(Figure taken from ref. 9.) 
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Figure 10: Comparison of measured and calculated ground-test-model internal  temperatures. hCw = 2.48 MW/m2; he = 25.6 MJ/kg. 
(Figure taken from ref. 9.) 
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